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SCIENCE DRIVERS

Our driver: Science communities’ recognition that the search for extant life is best answered through in situ
exploration of the ice shell interior and ocean of Ocean Worlds, especially those of Europa and Enceladus

: P2 TP
pLn : ’ . JCaer -
155N 15311074 Volume 19, Number ) January 2019 ; The Nationd-Avadesvies of = B P lﬁ P e
¢~ SCIENCES * ENGINEERING ™~ MEDICINE o ‘e@'i’”ﬁ"
| : "‘?'Q,-‘ ™

T S AN T AL, L LP S P AT Ty i .ﬁi-':.,x.‘1a =5 .~ : v Do S 2 "', - e f\
~ CONSENSUS STUDY REPORT P vﬁg‘ ,
. o, e A ] .
s S IN
B e o

\ Ocean Worlds Exploration
: - and the

Search for Life

5

~ N W |l S & W

& and
AN ASTROBIOLOGY &
STRATEGY FOR THE

search for
Life in the Universe

/

W S 1 J \W hmw

for Planetary Science in the Decade 2013-2022
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submitted to the Decadal Survey in Planetary Science and Astrobiology
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Our Goal: To descend beneath the ice of ocean worlds, characterize their subsurface, their habitability, and search for life
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MISSION CONCEPT

A Notional Mission to Europa

Launch, Cruise, and Jovian Tour Deorbit, Descent, & Landing (DDL) Ice Entry, Descent, & Ocean Access (EDO)

- 5:7yearsic

ShimRyearst

Lau.h.(,:h:i>'~2035:,  ,:]", . Landing: 7-9 years after launch Ocean Access: 2-6 years after landing
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DARE MIGHTY THINGS

PRIME RATIONALE

Operation through a new A new science-driven,
planetary subsurface mission  autonomous mobility platform:

phase:

The Cryobot (PRIME)
lce Entry, Descent, and
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THE EDO PHASE

THE MISSING PIECE OF AN OCEAN-
ACCESS CONCEPT OF OPERATIONS

1. ICE 2. COLD ICE 3. LAYER 4. WARM ICE 5. OCEAN _
ENTRY DESCENT TRANSITION DESCENT ACCESS M I S S I O N E N A B L I N G F EAT U R E S
> . . . :
by N p . Entering the ice and disconnecting from the lander
A A A A A : :
H | . Descending through cold, brittle ice, while detecting and
mitigating hazards
. Deploying communication relays as the environment
changes
. Sampling from the warm, convective layer
. Anchoring at the ice-ocean interface to complete the science
objectives
| @ Completing the journey in a programmatically-acceptable time
DEPTH
PQME
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THE EDO PHASE

THE MISSING PIECE OF AN OCEAN -
ACCESS CONCEPT OF OPERATIONS

DEMONSTRABLE IN THE LAB
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MISSION-ENABLING FEATURES

1. Entering the ice and disconnecting from the lander

2. Descending through cold, brittle ice, while detecting and
mitigating hazards

3. Deploying communication relays as the environment
changes

4. Sampling from the warm, convective layer

5. Anchoring at the ice-ocean interface to complete the science
objectives

Completing the journey in a programmatically acceptable time




THE EDO PHASE

THE MISSING PIECE OF AN OCEAN-
ACCESS CONCEPT OF OPERATIONS

...AND IN THE FIELD

MISSION-ENABLING FEATURES

1. Entering the ice and disconnecting from the lander

2. Descending through cold, brittle ice, while detecting and
mitigating hazards

3. Deploying communication relays as the environment
changes

4. Sampling from the warm, convective layer

5. Anchoring at the ice-ocean interface to complete the science
objectives
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P R I M E

System Concept Overview
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HALF-CENTURY OF PROGRESS =

1962 Philberth demonstrates the first “hot penny” melt probe to 1 km

M
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1967 Aamot publishes the first detailed description of an integrated melt probe for polar
applications for the US Army

{
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1990s Resurgence in planetary melt probe interest within NASA and JPL after discovery of
Europa’s ocean by Galileo

|7 -

gl Ak

1999 First radioisotope ocean access concepts proposed for planetary oceans

2001 Elements of flight system first demonstrated to 20 m in Svalbard

2000s Development continues through multiple programs, but several key technologies are
underdeveloped; NASA abandons plans to access lake Vostok with a cryobot

2010s As technologies develop, NASA again begins making cryobot awards through —}
ColdTech, PICASSO, MATISSE, PSTAR INSTRUMENTATION

2017 NASA Convenes KISS study on accessing the subsurface oceans of icy worlds,
determining that science and technology advances now allow planetary ocean
access architectures to close for the first time

2018 Following study results, NASA invests $10M in cryobot subsystems research through
the SESAME program
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2019 Initiated in-depth study to advance an integrated, flight-like ocean access cryobot

system concept to close remaining technology gaps
THE PHILBERTH PROBE
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Deepest achieved with

PREVIOUS EFFORTS

TAKING CRYOBOTS TO NEW DEPTHS, ANCHORED IN FLIGHT REALISM
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Deepest achieved with

TAKING CRYOBOTS TO NEW DEPTHS, ANCHORED IN FLIGHT REALISM
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terrestrial tech is 1,005 m.
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Flight-like systems have

achieved only up to 50 m

2030



Deepest achieved with

TAKING CRYOBOTS TO NEW DEPTHS, ANCHORED IN FLIGHT REALISM
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terrestrial tech is 1,005 m.
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MISSION-DERIVED CONSTRAINTS

THE OCEAN ACCESS “CHALLENGE BOX"”

LAUNCH VEHICLES limits launched mass

Launched mass constrains LANDED MASS

LANDED MASS

LANDED MASS constrains
Cryobot sizing

Science community identified
SCIENCE TARGETS

OCEAN ACCESS
CHALLENGE BOX

Cryobot sizing and available
heat sources set system heat density

Of these, Europa environments
Impose most severe design case

Flight times to Europa are acceptable
using available LAUNCH VEHICLES

Cryobot heat density
constrains TIME TO OCEAN

SCIENCE TARGETS
NV3dO0 OL dINIL

CRYOBOT SYSTEM CONCEPT

v' Supports the SCIENCE TARGETS of Ocean Worlds

v' Combined flight time and time to Oceans are acceptable

v LANDED MASS of < 350 kg fits on Europa-Lander-class lander

v Uses a radioisotope heat source and power system with clear path-to-flight
v TIME TO OCEAN is 2-6 years
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DESIGN DRIVEN BY ICE SHELL CONFIGURATION AND THICKNESS

Probability

DEFINING ENVIRONMENTS TO SUPPORT PROGRESS FORWARD

Conductive

5 10 15 20 25
Thickness [km]

MAJOR RESULT

Presented to the Europa

Convective Thickness [km]

Clipper Interior Working
Group and invited as one of

two Keynote icy satellite

talks at the 2020 Europlanet
0 10 20 30 40 50

Conductive Thickness [km]

Science Congress (EPSC)
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More Likely

Less Likely



FLIGHT SYSTEM CONCEPT DEVELOPMENT

ARCHITECTURE DEVELOPMENT:

Design Drivers

Functional
Decomposition

Subsystems &
System Trades

Performance
Anchoring

Concept
Integration

Key Critical
Technologies

F’I?AME
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FLIGHT SYSTEM CONCEPT DEVELOPMENT

ARCHITECTURE DEVELOPMENT:

Design Drivers

Functional
Decomposition

Subsystems &
System Trades

Performance
Anchoring

Concept
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Key Critical
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FUNCTIONAL DECOMPOSITION

THREE ENABLING TECHNOLOGIES

MOBILITY SYSTEM HEAT, POWER, WATER SYSTEM COMMUNICATION SYSTEM
Safely and efficiently descend through Effectively distribute heat, electrical power, Establish a robust and redundant line of
the ice shell and fluid through the interior of the Cryobot. communication through the ice shell.
o> W * - N
A A e i 1 - o
Vi il . W-N_w ap\/ Vi =
A ° I 1. 1 - § L
iy @ “ 1' a0\ H,r, —
. (/NS :
6 essential Mobillity functionalities 6 essential Heat, Power and Water functionalities 5 essential Comm functionalities
P@}ME Defined “Technology Modules” and their interdependencies that are critical to a successful completion of EDO 19
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CRYOBOT SIZING

SIZING PROCESS

~
The most driving consideration for

mission feasibllity is the Cryobot’s size
and In particular its diameter.

N

\

)

Sizing Process:

1. Define volume requirements for
three primary components:

 Payload
 Engineering Subsystems
« Power System Module

Add appropriate volume margin

2. Size heat source to define
probe model.

3. Use melt performance models
to assess probe speed
and Time-to-ocean

PIE;IME

Power System

NAAA..l A~

/ Heat source

Pressure
Vessel

|

Radial |
Margin

System Length

Payload

Science
requirements

v

Strawman
Instrument suite

}

Miniaturization
Challenge

1

Payload volume (CBE)

v
Margin
4

Payload volume (MPV)

1

Total Heat (# Units)

System Volume » Total Volume (MPV) 1«

\} (MPV)
Probe Diameter

|+

l

Probe Performance Model

Europa Ice Shell Uncertainty models
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Engineering
Subsystems

Comm.

Avionics

Thermal

Front end

1

Engineering
volume (CBE)

\

l Margin
\
Engineering
Volume (MPV)

Relevant Volume <

Probabilistic
Time-to-ocean

\4

Tapered Volume



ARCHITECTURE CLOSURE

T DEEAT Europa Uncertainty Model
5 Cryobot average speed vs payload volume fraction : 5 . ' : \
z 0.1 Wice Time to ocean
E(}) 0.2 Wiee — CBE model |
O 0.3 Wicc —_——
2 0.4 Wice \ MP\( mOd\el
10 | ® 0.5 Wicc T ,
(D N

Convective Thickness [km]

Avg speed through ice shell [km/yr]

O 01 02 03 04 05 06 07 08 009 1 0 10 20 30 40 50 60
Payload volume fraction Conductive Thickness [km]

Study results:
* 80% of realistic cases can be completed in < 6 years

* Ensures that EDO phase should not be longer than a typical
cruise phase for an outer planets mission

* Ensures mission completion within the design life of the RTG

21

CBE: Current Best Estimate
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FLIGHT SYSTEM CONCEPT DEVELOPMENT

ARCHITECTURE DEVELOPMENT:

Functional

Design Drivers =~ Decomposition

Subsystems &
System Trades

Performance
Anchoring

Concept
Integration

12 Compact Power Heat Source (CPHS)
10.5 kW4, at BOL
~0.71t0 1 kW, at BOL

SYSTEM METRICS:

PROJECT PHASE

Key Critical
Technologies

23 cm diameter x 3.9 m length

Margined volume allocation for HPW

28 liter-science payloac
50% volume margin (ot
350 kg mass (marginec

ner than HPW)
)

2-6 years transit throug

N 80% of

possible Europa ice shells
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P R I M E

Path Forward

PI?%ME
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EVOLUTION OF TECHNICAL SCOPE

FOCUSING ON MOST IMPACTFUL TECHNOLOGY DEVELOPMENTS

Focus on holistic mission
architecture

« Establish mission feasibility

* Derived key trades and constraints

Focus on Cryobot during
EDO

« System Architecture

* Functional Decomposition

* Technology gaps
Focus on long-lead technologies

and their system integration
* Moblility System

« Heat, Power, and Water Module
 Communication System

Focusing on technologies and their interdependencies that are critical to successful completion of EDO
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Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology
under a contract with the National Aeronautics and Space Administration
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